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Inhibition of intergranular cavity growth in 
precipitate-hardened materials 

W. B E E R E  
Berkeley Nuclear Laboratories, Berkeley, Gloucestershire, UK 

Vacancy production on boundaries decorated with precipitates is discussed. Init ial ly the 
boundaries are considered to be perfect vacancy sources. Displacements due to vacancy 
diffusion to a cavity are equated with plastic deformation rates around a precipitate. 
Vacancy diffusion is shown to smooth out  stress concentrations over the precipitates. 
Below a threshold stress this model cannot describe vacancy diffusion in the boundary. 
It is suggested that at low stresses the boundary is an imperfect source of vacancies. An 
alternative model is developed in which vacancy creation at low stresses is controlled 
by dislocation creep in the matrix. The theory is applied to cavity growth, and the 
operational regimes of various control mechanisms are discussed. 

1. Introduction 
The creep life of metals working under load at 
high temperatures is important in many aspects 
of power generation. Clearly, valid models of the 
failure processes help to understand the regions of 
safe operation even when the absolute value of the 
lifetime cannot be predicted accurately. One type 
of failure often seen results from the nucleation, 
growth and eventual coalescence of many cavities 
situated in grain boundaries. The cavities can show 
features which suggest that diffusive processes are 
an important factor in their growth. For instance 
the cavities can be rounded or penny shaped 
suggesting fast or slow surface diffusion relative 
to grain-boundary diffusion [1]. In the latter 
case, penny-shaped cavities in ~ iron can exhibit 
dendritic growth in the boundary [2]. This feature 
correlates well with grain-boundary vacancy 
diffusion controlled growth since such instabilities 
in the growing interface can be predicted from 
theory [3,4].  

Vacancy diffusion controlled growth theory 
predicts a growth rate proportional to stress to 
the power unity but correlation with experiment 
can be complicated by the continuing nucleation 
of cavities during testing. Several experiments 
have overcome this difficulty by nucleating all the 
cavities during the initial stages of creep [5], im- 
planting cavities [6], prestraining [7] or measure- 
ing the growth rate ot cavitaes nucleated during 
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the initial stages of creep [1]. In general, the 
results do not correlate well with vacancy diffusion 
controlled growth theory. 

Several modifications have been made to the 
diffusion theory which go some way to closing the 
gap between theory and experiment. The vacancy 
diffusion fluxes in the boundary can be coupled 
to the dislocation creep processes occurring 
further from the cavity [8]. This allows for the 
smooth transition between diffusion control at 
low stresses and dislocation creep control at high 
stresses. In the quite extensive changeover region, 
cavities can show the morphology of diffusion 
processes whilst having a growth rate correlating 
with dislocation creep rate. Allowances can also 
be made for slow surface diffusion producing 
crack-like cavities [9, 10]. 

The net result of the modifications is to describe 
cavity growth rates, either change in volume or 
grain-boundary area occupied, which correlate 
with a higher power of stress than unity and 
which are usually faster than the grain-boundary 
vacancy diffusion mechanism alone. Whilst this 
may provide a description of some single-phase 
metals it is certainly not true for many precipitate- 
hardened alloys. This fortunate state of affairs 
manifests itself in growth rates which can be 
several orders of magnitude below rates predicted 
by grain-boundary diffusion [5,7].  

The growth rates can be reduced by geometri- 
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cally necessary accommodation creep strain 
between grains provided certain conditions are 
met [11 ]. If the cavities are not distributed evenly 
between boundaries then the displacement across 
the grain boundary resulting from cavity growth 
has to be accommodated by creep elsewhere. 
Provided the polycrystal is deforming by diffusion 
creep or at least is in the transition region with dis- 
location creep, the cavity growth may be accom- 
modation controlled [12]. Accommodation is not 
necessary in bicrystals. Diffusion-controlled cavity 
growth has been found in bicrystals whilst being 
inhibited in polycrystals in the same precipitate- 
hardened system [5, 13]. 

Geometrical constraint in neighbouring grains 
occurs when the accommodation of cavity volume 
by creep is slower than the mechanism actually 
creating the cavity. This condition can be met 
when both creep and cavity growth are diffusion 
controlled. However, diffusion creep is repressed 
in many precipitate-hardened alloys and it is 
possible that diffusion-controlled cavity growth 
is similarly inhibited. In this case the role of geo- 
metrical accommodation by creep is no longer 
clear cut. 

The inhibiting effect of refractory particles 
may stem from the nature of the particle/matrix 
interface. Although vacancies can be created at 
t h e  particle/matrix interface, it appears that 
vacancies are not created as freely as in the grain 
boundary [14]. The interfacial effects are known 
to limit the mobility of small particles particularly 
when the particle has a high melting point. The 
nature of t h e  interfacial barrier for vacancy 
creation has been discussed by several authors 
often with reference to diffusion creep or particle 
dragging [15, 1 6 ] .  

The effect of particles on pore growth can be 
discussed by considering a cavity growing by a 
combined diffusive/dislocation process [8] with 
grain-boundary precipitates nearby. Provided the 
applied stress is sufficiently high, vacancies are 
created mainly adjacent to the cavity and diffuse 
to its surface. The displacement caused by vacancy 
creation is matched by dislocation creep further 
away from the cavity. In this respect the grain- 
boundary precipitate and any fme dispersion of 
precipitates in the matrix provide resistance to 
dislocation creep. On lowering the stress, the 
vacancy creation zone expands until ultimately it 
closely approaches the precipitate. If now, we 
assume, as indicated earlier, that vacancies are 
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not readily created at the matrix/particle inter- 
face, then the matrix around the particle must 
still creep to accommodate the grain-boundary 
displacements. Such a model has been considered 
previously in which the localized creep is produced 
by the punching of dislocation loops [17]. Similar 
models also consider the stress to be concentrated 
at the particle [18]. Tile particles often occupy a 
small fraction of the total grain-boundary area. 
The assumption implies that large stresses can be 
locally generated which easily punch loops thus 
producing a relatively small inhibition effect. 

The present paper considers the assumption 
regarding stress concentrations over particles 
during cavity growth. The stress concentration 
is initially considered to extend onto the bound- 
ary adjacent to the particle. Vacancy diffusion 
fluxes and matrix creep around precipitates are 
coupled to establish if the arbitrarily chosen 
stress prof'fle is stable. Large stress concentrations 
over particles are justified if the stress concen- 
tration profile sharpens up over the particles. 
Otherwise a tendency for the concentration profile 
to broaden will reduce the stress over the particle 
and hence reduce the rate of loop punching and 
localized dislocation creep. The analysis initially 
considers the boundary to be a perfect source for 
vacancies. This assumption is later shown to lead 
to inconsistencies. An alternative approach to the 
cavity growth problem is then suggested. 

2. Stress profile on a boundary behaving 
as a perfect source for vacancies 

Following a previous analysis [8], the normal 
boundary stress acting across a boundary contain- 
ing a cavity is illustrated in Fig. 1. In region I, 
vacancy creation and diffusion in the grain bound- 
ary dominates grain displacement. The grains on 
adjacent sides of the boundary move apart at a 
rate dependent on the vacancy creation rate which 
is equivalent to the second derivative with distance 
of the normal boundary stress. In region II, dislo- 
cation creep dominates boundary displacements 
and few vacancies are created. Hence the second 
derivative of stress approaches zero and the stress 
is sensibly constant. The simultaneous existence of 
both regions requires that the displacement rate 
of material above regions I and II is equal, that the 
normal boundary stress should be continuous and 
sum to a force equal to the combined effect of 
applied load, internal gas pressure and surface 
tension restraint. 
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Figure I The cavity is growing by collecting vacancies created in region 1 of the grain boundary. The displacements 
in region 1 resulting from vacancy creation are accomodated in region 2 by dislocation creep. 

The dislocation creep mechanism is more 
sensitive to stress than the diffusion mechanism. 
Decreasing the applied stress decreases the dis- 
placement rate above region II faster than above 
region I. The imbalance is corrected by increasing 
the size of region I. This increases the length 
of the diffusion path and decreases the vacancy 
flux, the cavity growth rate and hence also the 
displacement rate. In the absence of precipitates, 
decreasing the applied stress eventually causes 
adjacent diffusion-controlled regions to impinge. 
The cavity growth rate is then predicted t o  be 
entirely diffusion controlled. 

Previously it was argued that the ability of the 
matrix/particle interface to create vacancies can 
be much reduced in comparison with a grain 
boundary. In this case when the grain boundary 
between cavities contains a precipitate the dis- 
placements in the region of the precipitate must be 

always matrix creep-controlled however low the 
applied stress. Creep requires that the stress in the 
matrix above the particle must be larger than the 
stress on the boundary. It is inevitable that shear 
in the matrix will cause the normal boundary 
stress to increase on the grain boundary adjacent 
to the precpitate (Fig. 2a). 

The first derivative with distance of the bound- 
ary stress is proportional to the flux of vacancies. 
Since the production rate of vacancies will be 
assumed zero over the particle, the gradient of the 
boundary stress is zero at the particle. The stress 
can be discontinuous on moving from the matrix 
to the particle interior since the elastic constants 
differ. However, the analysis considers matrix 
creep and in the matrix the stress is continuous. 
For convenience the stress is assumed constant 
over the particle. 

The second derivative of boundary stress with 
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Figure 2 An arbitary boundary stress profile is 
illustrated in which stress is concentrated over 
a precipitate decorating the boundary, this 
form of stress profile implies that a boundary 
acting as a "perfect" vacancy source is also a 
vacancy sink. 
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distance is negative in region I (Fig. 2a) changes 
to a positive value in region II before becoming 
negative again on approaching the precipitate. 
The creation rate of vacancies is proportional to 
the second derivative of normal boundary stress. 
Increasing the stress over the precipitate creates 
a localized source and sink for vacancies (Fig. 
2b). The analysis now assesses the effect semi- 
quantitatively. 

3. Numerical analysis (one-dimensional) 
Let the cavity have a radius a l ,  the particle a radius 
a~ and let the plating zone extend a distance bl 
from the cavity surface (Fig. 2a). If the distance 
between the centres of cavity and precipitate is 
c then c = al + a2 + bl + b2 where b~ is the size 
of region II. The local displacement velocity 
between grains in region I due to vacancy creation 
is/3~2, where ~2 is the atomic volume. Assuming 
equilibrium between normal boundary stress and 
vacancy concentration the one-dimensional differ- 
ential equation relating normal stress and displace- 
ment velocity is given by 

d 2 ai kT  
d x - - - ~ + / 3 1 ~ g ~  = 0, 0 ~ x l ~ b l ,  (1) 

where ox is the normal boundary stress and/31 the 
creation rate of vacancies in region one, xa the 
distance along the boundary measured from the 
pore surface, Dg the grain-boundary diffusion 
coefficient, 6 the grain boundary width, and kT 
the thermal energy. 

Initially it is assumed that the vacancy source 
and sink immediately outside the precipitate are of 
equal strengths. Hence the vacancy flux between 
regions I and II is zero 

do, I = o. (2) 
i 

dxib,, 
The normal boundary stress matches the surface 
tension restraint at the cavity 

O'l(X = O) = 3"/a I ( 3 )  

where 3' is the surface tension. The solution of 
Equation 1 subject to the Conditions 2 and 3 is 

O1 = - -+131 ,~- -A~ l X l  - �9 
a 

Initially it is assumed that stress is concen- 
trated over the precipitate and extends onto the 
boundary a short distance. Reference to Fig. 2b 
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shows that the second derivative (d2G/dx2), is 
initially negative near the cavity but must change 
sign in the region where the stress increases sharply. 
On approaching the precipitate the second deriva- 
tive reverts to a negative value again. The latter 
condition is necessary because vacancies are not 
created on the precipitate and the vacancy flux 
(a da/dx) is zero at the precipitate. The form of 
the vacancy creation rate around the precipitate ,is 
not known but the consequences of the argument 
can be discussed semi-quantitatively by assuming 
a simple form for the vacancy creation rate. The 
fluxes in region II can be localized by assuming 
a vacancy creation rate of the form (32x2(x2- 
b2/2)(x2 --b2)/(b2/2) a, where x 2 is measured 
from the precipitate. This ensures that the stress 
undergoes inflections at the points x2 = 0, b2/2, 
b2. The creation rate is symmetric about x = 
b2/2 and the vacancies created in the region 
0 <<.x2 ~ b2/2 are exactly annihilated in the region 
b2/2 < x2 ~< b2. The maximum and minimum 
vacancy creation rates are at x2 = (1 -+ 1/x/3)b2/2 
at which points the value is + 2/32/3 x/3. The differ- 
ential equation is 

d202 kT 8x2(x2 -- b2/2)(x2 -- b2) 
+ Dg8 = O, 

0 ~< x2 ~< b2 

and the solution subject to the conditions 

do2 

~21b 2 = 0  

a2(x2 = b~) = oi(xl - - b l )  

is given by 

v [Xr b  

+~2tD--~g6}t-- 3 + b 2 x 4 - - 5  - 151b-~" 

The stress over the plating zone and around the 
precipitate must equal the applied load. If o is 
the externally applied tensile stress and the bound- 
ary is normal to this stress, then balancing forces 
gives the equation below. 

I2' ( a l + b l + a 2 + b 2 ) o - - 3 "  = O ' l d X  1 

+ o a2 dx2 +a2e~(0).  



The stress over the particle has been considered 
constant. Integration gives the result 

a~ (5) 
[kT\/bg b~a2t 

+ , .  

Initially region II is arbitrarily confined to the 
zone b2 = 2a2. Equation 5 then reduces to 

The excess stress over the precipitate must be 
capable of driving the dislocation creep process at 
a rate commensurate with the vacancy creation 
rate on the boundary. The displacement rate next 
to the precipitate now has a maximum value of 
2132S2/3x/3. The rapid increase in stress on 
approaching the particle can increase the rate 
considerably above the value 3192 nearer the 
cavity. If the material deforms by a power law 
process of the type ~ = Bo n then the displace- 
ment rate by power law creep equals the dis- 
placement rate by vacancy creation when the 
following applies: 

The decrease in stress on moving from x2 = 0 
to x2 = b2/2 can be found from Equation 4. 
Putting b2 equal to 2a2 then from Equations 4 
and 7 the vacancy creation rate in region II is 
given by 

2 ~ (15Dg61n 
~3~-' ~ 3X/3 a - ~ \ ~ ]  " (8) 

The growth rate of the cavity dA/dt is given by 

dA 
-- 131a(al + bl). (9) 

dt 

When the precipitate is small compared to the 
precipitate/cavity spacing, c is approximately 
equal to b2. Then from Equations 6, 8 and 9 the 
growth rate is given by the equation 

d---t ~ ~ kTc ~~176176 

where a0 is a threshold stress given by 

ao ~ 4(a2)(n-4)/(n-1)( 5 D g ~ )  1/(n-D 
r X~ BkT . (10) 

The above formulae have been calculated by 
matching the upward displacement in the region 
b2/2 >x2 > 0  (Fig. 2) due the vacancy creation 
with dislocation creep over the particle. Further 
away from the particle the displacement is 
reversed, and material on adjacent sides of the 
boundary is moving together. This displacement 
is not matched by dislocation creep since com- 
pressive forces would be required. The conclusion 
is that the negative displacement at the vacancy 
sink causes the stress to rise in the interval b2 > 
x2 > b2/2. Since the integrated stress must equal 
the applied load, the stress over the precipitate 
drops and the stress concentration broadens. 

Compressive forces cannot develop on the 
boundary since they would be unstable. Consider, 
for instance, a third region between regions I and 
II in which file second derivative of stress is 
positive (vacancy sink) and the stress is com- 
pressive. Now let the compressive stress decrease 
slightly. This will decrease the vacancy sink dis- 
placement rate in an approximately linear fashion. 
The dislocation creep displacement rate decreases 
faster for a typical material with a high creep 
exponent. The mismatch between the two rates 
is in the direction that decreases the compressive 
stress still further. Eventually the stress becomes 
tensile and the stress concentration broadens as 
argued previously. 

The threshold stress calculated previously 
(Equation 10), was based on the initial assump- 
tion of a local stress concentration around the 
precipitate. It has been argued that the concen- 
tration profile tends to broaden. The maximum 
broadening occurs when region II occupies the 
whole of the available boundary (Fig. 3). The 
cavity growth rate in this extreme will be zero 
since diffusive fluxes are directed solely to accom- 
modating plastic flow around the precipitate. 
The applied stress can be found by letting b2 
increase to a value ( c -  al ---a2)~ C. The analysis 
can be repeated in an analogous way to obtain 
the applied stress when the dislocation creep rate 
balances the vacancy creation rate over the region 
b2/2 >x2 > 0. This applied stress is given by 

7 (40  Dg~ ~,~ 1/(n-l) 
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The latter stress is larger than the previous value 
(Equation 10). However, the problem of a stable 
stress distribution has still not been solved since 
the vacancy sink will still tend to increase the 
stress in the region b2/2 < x2 < b2. If the tensile 
stress is allowed to increase further then a situation 
is eventually reached in which the second derivative 
of normal boundary stress with distance changes 
sign. The boundary is then no longer a vacancy 
sink and the second derivative is everywhere 
negative. This is now the situation envisaged in the 
Introduction when describing the changeover 

Figure3The stress concentration over the 
particle can be broadened until limited by the 
necessary stress (2-y/a) adjacent to the cavity. 
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between vacancy diffusion and dislocation creep 
control (Fig. 4). It was argued that on decreasing 
the applied stress the diffusion-controlled zone 
increased in size until the precipitate was encoun- 
tered. On lowering the stress still further the 
dislocation creep displacements could only be 
matched with vacancy creation rate displacements 
if some form of stress concentration was allowed 
over the precipitate. However, the stress concen- 
trations have been found to be unstable. Rapid 
vacancy diffusion tends to even out inflections 
in the grain-boundary stress profile. 
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Figure4 The stress proTde when the entire 
boundary acts as a vacancy source. This situ- 
ation depicts the minimum applied stress for 
which a solution'is available for the combined 
diffusion/dislocation creep problem. 



4. Mechanisms of vacancy creation in the 
boundary 

The analysis has considered coupled grain-boundary 
diffusion and dislocation creep processes operating 
in the region of a cavity and a precipitate. The 
only stress distribution found to be stable was one 
which always had a negative second derivative of 
normal boundary stress with distance. This implies 
that the boundary is everywhere a vacancy source. 
In addition, a localized stress concentration cannot 
exist anywhere on the boundary. The dislocation 
creep displacement rate can be matched with the 
vacancy creation displacement rate only above a 
certain applied stress. On lowering the applied 
stress the critical stress is reached when the dif- 
fusive plating zone, extending from the cavity, 
closely approaches the precipitate. Below the 
critical stress no stable solutions were found to 
the coupled diffusion/dislocation creep model. 
Many different types of stress profile were tried 
but are not reported here. Clearly this does not 
constitute a proof that a solution does not exist, 
but the arguments regarding the positive values of 
the second derivative can be made quite general. 
The analyses always led to the conclusion that 
the two deformation processes Could not be 
coupled below a critical stress. 

Obviously stress distributions across the bound- 
ary do exist below the threshold stress but the 
initial set of assumptions embodied in the analysis 
do not allow a description. The initial assumptions 
were assessed. The likely candidate to be invalidated 
in the present application is the condition of 
equilibrium on the boundary. This maintains that 
the excess vacancy concentration is proportional 
to the normal tensile stress. Thishas been validated 
in pure materials by diffusion creep experiments. 
However, in precipitate-hardened materials dif- 
fusion creep can be inhibited. In this case it is 
likely that the boundaries are not perfect sources 
of vacancies. The mechanism of inhibition is 
unlikely to involve areas of a boundary which 
behave perfectly containing small particles acting 
as poor vacancy sources. This leads to stress con- 
centrations above the particles. Rapid vacancy 
diffusion, even by volume diffusion, will tend to 
flatten out the stress profile as discussed earlier. 

Alternatively, the entire area of boundary may 
be a poor source of vacancies. This situation can 
be envisage if vacancies need to be created at a 
line source with dislocation character. The motion 
of the dislocations in the boundary will, in general, 

involve a combination of glide and climb. The 
velocity of a dislocation climbing along the bound- 
ary depends on the net stress acting on the dis- 
location. If an edge dislocation moves in a pure 
climb mode along the boundary, the rate of 
working by the applied forces per unit length of 
dislocation must equal the energy dissipated as 
heat when the dislocation moves. If the dislocation 
is one of an array climbing along the boundary, 
forces are balanced by the equation 

V' krbln['• (11) 
8= = 2, a leo] 

where B' is the mobility of the dislocation, c is 
the vacancy concentration, Co the concentration 
at an unstressed boundary acting as a perfect 
source, and the summation represents the inter- 
action stresses between dislocations in the array. 
In the absence of obstacles the dislocation array 
climbs uniformly, the dislocation spacings are 
equal, and the summation is zero. Experimentally 
observed interfacial effects are small in single- 
phase materials. Hence (V'/B') is small and from 
Equation 11 the normal boundary stress is given 
by the usual form a = (krfi2) in (c/c0). 

Precipitates impede the motion of the dis- 
locations in the boundary. Continued dislocation 
climb can be achieved by bowing round the 
precipitates leaving behind dislocation loops 
around the precipitate. The continued operation 
of dislocation climb in the boundary depends on 
the removal of the dislocation loops around the 
precipitate. Many loops form a dislocation pile up 
but the stresses at the head will be relaxed by 
matrix plasticity below the stresses calculated for 
elastic dislocation pile ups. The summation term 
in Equation 11 will now be significant and the 
"equilibrium" vacancy concentration will be 
below the value for a "perfect" boundary. 

If the stress at the particle is sufficiently large, 
the dislocation loops may be removed by loop 
punching or alternatively by dislocation climb in 
the particle/matrix interface. Quantifying this 
type of model is difficult because the relationship 
between normal boundary stress and excess vacancy 
concentration is now not known. The stress over 
the particle, the vacancy concentration in the 
boundary and the dislocation configuration in the 
boundary are all intimately connected. 

An alternative approach is to consider the 
number of dislocations entering the boundary 
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from the matrix due to dislocation creep. Obser- 
vations suggest that lattice dislocations can enter 
the boundary where they may form partials or 
combine with other dislocations before climbing 
in the boundary plane [19, 20]. In steady state 
the density of boundary dislocations remains 
constant. Later it is shown that dislocations must 
reenter the lattice elsewhere. This model is similar 
to one proposed earlier but has been quantified 
and modified to incorporate the effect of pre- 
cipitates [21]. 

5. Creep control of vacancy creation/ 
annihalation in boundaries 

Dislocation creep in the matrix inevitably results 
in some dislocations entering grain boundaries 
where they may climb a short distance before 
being reemitted into the matrix. The problem is 
to quantify the vacancy production rate in the 
boundary for a given plastic strain in the matrix. 

Consider a block of material containing dis- 
locations having their glide plane parallel to the 
1-axis (Fig. 5). During creep dislocations glide 
until their motion is impeded by an obstacle. 
The dislocation may climb a small amount to 
release itself before repeating the glide step. 
Although the creep may be controlled by the 
climb process the bulk of the plastic deformation 
is glide. Ignoring the smaller climb contribution, 
the strain rate in the square block (Fig. 5) due to 
dislocations of density, p, with Burger's vector, b, 
moving at an average velocity, V, is 

e12 = pVb. 

All other strains in the block are considered 
negligibly small. If the block is orientated at an 
angle 0 to the specimen axes the specimen strains 

are given by 

e2'2' = e12 sin 0 cos 0 

41'2; + 42'1' = ~a2(cos20 - sin20). 

The material will have more than one operative 
gfide plane and for m glide planes we have 

I t t  

e2'2' ---- 2i PiVibi sin Oi cos Oi ] 

~ (12) 

e2' 1' + e1'2; ~ oiVibi(cos201 -- sin20~)} 
i 

In the matrix, volume is conserved hence e2'2' + 
~1'1 ; =  0 and since rotations are not considered, 
only the symmetric form of the strain tensor 
need be used. Thus at least two independent 
glide systems are needed to satisfy Equations 12. 
(In three dimensions at least five independent glide 
systems are needed to satisfy the five equations 
as required by the Von Mises condition.) 

When lattice dislocations enter the boundary 
they may dissociate. The climb of all the dis- 
sociated dislocations produces the same net 
translation as the original dislocation. Hence to 
find the net translation we need only consider 
the nature of the dislocations entering the bound- 
ary. This ignores the motions of internally gener- 
ated grain-boundary dislocations. The precipitates 
are assumed to block the dislocation generation 
mechanism in the boundary. The sum of the 
normal components of dislocation Burger's vectors 
entering the boundary can be shown to be non- 
zero. In steady state the dislocation density remains 
constant, hence dislocations are also re-emitted 
from the boundary. 
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Grain boundary 'Figure 5 Dislocation in the matrix enter 
the boundary (shown dashed) during the 
course of creep. In the boundary the 
dislocations climb a distance l before 
being re-emitted into the matrix. 



If dislocations in the boundary climb a distance 
l before being re-emitted, then on average, in time 
dt, half the dislocations in the parallelogram of 
sides l and V d t  (Fig. 5) will pass through the 
point x. The other half share the same glide plane 
but move in the opposite direction. Since an equal 
number enter the boundary from above, the 
normal motion of the boundary at the point x is 

rrt' 

h = ~ P[ V[bl  sin20. (13) 
0 < 0 < T r  

The positive value of V is taken to sum correctly 
the contributions from different climb directions 
in the boundary. The resolved shear stress on the 
dislocations is given by 

aa2 = (o2'2'- Ol'a') sin 0 cos 0 

+ o1'2~(cos20 -- sin20). 

Thus for uniaxial deformation (ol'a ~'- o l ' f l=  0; 
o2'2' = o), Vis positive in the interval 0 < 0 < rr/2 
and negative in the interval 7r/2 < 0 < rr. 

Equations 12 and 13 may be simplified by 
taking average values for the angles of the glide 
planes. In the case of uniaxial strain, the velocity 
V changes sign as discussed above and the geo- 
metrical terms in the summation for the shear 
strain rate (Equation 12), becomes zero as 
required. The average values for the uniaxial 
strain rate (Equation 12), and the normal velocity 
(Equation 13), become 

2 
d2'2' = --  plglb 

Tg 

1 
h = -~ p l m l b l .  

Putting e2'2' = e' the strain rate immediately above 
the boundary, the normal motion of the boundary 
is given by 

h = rr ~'l. (14) 
4- 

The average values for the summations may also 
be found for a matrix deforming in pure shear. 
In this case the normal boundary motion is found 
to be zero. Similarly a boundary parallel to the 
stress direction during tensile deformation is a 
vacancy sink. 

6. Cavity growth 
The previous section calculated the normal motion 
of the boundary resulting from dislocation climb- 
creating vacancies. The vacancies were produced 
solely by dislocations entering the boundary from 

the matrix and climbing a short distance before 
being re-emitted. Dislocations created internally 
in the boundary will also be capable of climbing 
and creating vacancies but in boundaries decorated 
with precipitates it is assumed, at least for the 
present, that this mechanism is blocked. It will 
also be assumed that the matrix dislocations on 
entering the boundary climb on average a distance 
equal to the precipitate spacing 2X before being 
re-emitted. The validity of the assumptions will 
later be checked by comparison with experiment. 

The rate of increase in volume of cavities k, 
is given by the change in volume associated with 
an area of boundary ~rc 2 , where c is the cavity 
half-spacing. 

i~ = rrc2h 

7r 2 
= - -  ~ . t  

2 c Xe. (15) 

The creep rate required in Equation 15, ~', is local 
to the boundary. It will differ from the far field 
creep rate due to the effect of the porosity. 

If o is the applied stress and at the average 
stress local to the boundary, balancing forces gives 

ac 2 = crt(c 2 - -  a 2) + 2a7  (16) 

where a is the cavity radius, 3' the surface energy, 
and c the cavity half-spacing. Rearranging Equation 
16 gives 

:-r-27_: 
The relationship between the far field creep rate 
and the local creep rate ~' will be 

: C2 , n /  

- -~oo: '  (17) 

where n is the creep exponent for power law creep. 
Finally the rate of change of volume from 
Equations 15 and 17 is 

i~ ~ - y c  X e ~ { _ a 2 / c =  ] . (18) 

7. Discussion 
Equation 18 describes the growth rate of a cavity 
due to lattice dislocations entering the grain 
boundary and climbing a short distance before 
being re-emitted. The rate-limiting step is taken 
to be the supply rate of dislocations from the 
creep process in the matrix. The cavity grows by 
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Figure 6The cavity growth rate predicted for 
four mechanisms operative in a copper silica 
alloy at 500 ~ C. 

1000 

the agglomeration of vacancies but the vacancy 
supply is controlled by dislocation creep. Vacancies 
created during dislocation climb diffuse rapidly 
to the cavities. The latter requirement will be 
true provided the diffusion-controlled vacancy 
growth rate is faster than the creep-limited creation 
rate. The diffusion-limited rate has been calculated 
by many authors for the case of grain boundaries 
acting as perfect sources of vacancies. However, 
in this form of diffusion control the boundaries 
will have a slightly reduced efficiency for vacancy 
creation. The models for perfect source behaviour 
are a useful upper bound for diffusion rate- 
controlled growth and will be used in a com- 
parison of growth rates. Several very similar 
expressions have been derived for the latter growth 
rate and the following is used solely from famili- 
arity [22], 

where / )d  is the diffusion controlled growth rate, 
Dg the grain-boundary diffusion coefficient, 
the grain-boundary width and ~2 the atomic 
volume. 

At higher stresses the growth rate is again con- 
trolled by plastic deformation of the matrix. This 
time the growth is solely by plastic strain and does 
not involve vacancy agglomeration. The rate of 
change of cavity radius for this process is given 
by ti ~ a ~ / 2  [23]. Incorporating approximately 
the effect of cavity interaction gives the equation 

bY ~ 2rraae \ 1 - -  a2lc 2 ] " (20) 

Finally, cavity growth can be controlled by 
geometrical creep constraint of surround grains 
[11]. The following expression describes the 
constrained growth rate for power law creep [12] 

81rDg8 ~ ( o  - -  23,/a) 
f)d = k T ( 4  In (c /a)  - -  (1 -- a2/c2)(3 - -  a2/c2) ' 

(19) 

(_n-- 1)In 10) 
ve = 2X2de exp 5 ' 

where d is the grain size. 

(21) 
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1000 

The four mechanisms described by Equation 18 
to 21 were compared for a copper/silica alloy [5]. 
The creep rates employed in the calculations were 
taken from the experimental data. The precipitate 
sizes and spacings were known. The grain-boundary 
diffusion coefficient was taken from an analogous 
study of cavity sintering [24]. 

Fig. 6 shows the calculated growth rate for a 
copper-silica specimen crept at 500~ Small 
cavities are predicted to grow by the creep- 
controlled vacancy growth process at low stresses. 
This process is very stress sensitive and at higher 
stresses the climb rate of boundary dislocations 
becomes limited by vacancy diffusion. The control 
mechanism now changes to diffusion-controlled 
vacancy growth. The two vacancy growth processes 
are sequential and the slower controls. Increasing 
the stress further changes the control mechanism 
from diffusion to plastic growth as has been dis- 
cussed previously. The latter two mechanisms 
behave like independent mechanisms and the 
faster is rate controlling. 

Closer examination of the vacancy diffusion 

and plastic growth mechanism reveals considerable 
interaction, and in the changeover region the 
growth rate is faster than the sum of the two 
rates [8]. Since in the present discussion the inter- 
action effects are not known, none of the growth 
rates are summed, although the true growth rate 
will have a smooth transition between control 
mechanisms. 

When cavities are large and interacting, cavity 
growth is controlled by geometrical creep con- 
straint. This mechanism acts in a sequential manner 
with the other growth mechanisms. The approxi- 
mations in the growth rates Equations 18 to 21 are 
least satisfactory for large closely spaced cavities. 
The extent of the constrained region is subject to 
some uncertainty. 

The correct choice of growth control mechanism 
does not depend on the fastest mechanism 
since the mechanisms share mixed sequential/ 
independent type relationships between each 
other. The correct choice can be made by first 
considering the two sequential-type processes: 
creep-controlled vacancy growth and diffusion- 
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controlled vacancy growth. The slower of the 
two need only be considered further. Next com- 
pare this rate with the vacancy-independent plastic 
growth rate. These act independently and the 
faster of the two is considered. Finally, the three 
direct growth mechanisms act sequentially with 
geometrical creep constraint. One of the direct 
growth mechanisms will be rate controlling pro- 
vided the geometrical creep constraint mechanism 
is faster. 

The cavity growth rate in the  copper/silica 
alloy has also been calculated for a higher tem- 
perature (Fig. 7). The operative regions assigned 
to each mechanism remain roughly the same 
although the absolute growth rate increases. Also 
indicated in Figs. 6 and 7 is the stress range open 
to experimentation. At lower stresses observations 
are inconveniently long and at higher stresses 
other failure mechanisms become operative. 

The calculations indicate that in the exper- 
imental region much of the growth is controlled 
by the creep-controlled vacancy growth mechan- 
ism. Diffusion-controlled vacancy growth and 
plastic growth will be operative for a short time 
near fracture. At lower stresses control can change 
from creep-controlled vacancy growth directly tc 
geometrical constraint. In this case the component 
will spend almost its entire life in the creep- 
controlled vacancy growth region. The strain to 
failure ~t~, where tf is the lifetime, can be found 
by integrating Equation 18 

~ t f  = - -  o 
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This assumes that all cavities are initially present 
and of size ao. The above formula has been applied 
to the copper/silica data and is illustrated in Fig. 8. 
Cavities were produced by prestraining prior to 
creep. The value of ao/X has been put equal to 
the ratio of the precipitate radius to spacing. The 
creep exponent varied with temperature and has 
a considerable effect on the lifetime. The exper- 
imental observations and the theoretical pre- 
dictions show similar trends. The observed variation 
of lifetime with ao/X and n is predicted by theory 
to change in a similar fashion. 

The creep-controlled vacancy growth mechanism 
outlined in the present paper may prove useful 
in assessing cavity growth in creep-resistant alloys. 
Calculating the vacancy production rate depends 
on relating the plastic strain local to the boundary 
with the specimen strain. In bicrystal experiments, 
unconstrained sliding on the grain boundary may 
result in an excess vacancy production and a 
growth rate limited by diffusion. In addition, 

creep-controlled vacancy generation mechanism 
does not include other grain-boundary dislocation 
sources. If, for instance, the boundary is free of 
precipitates and the climb distance I in Equation 
14 is put equal to the grain size, the vacancy 
production rate is too low to observe diffusion 
creep. In this case the dislocation sources in the 
boundary are not blocked by precipitates and can 
supply dislocations. The present theory could be 
modified to incorporate specific effects but this 
is probably unwarranted until further comparisons 
have been made. with experiments. 

One present difficulty in interpreting the 
copper/silica rupture data [5] lies in assigning 
initial values to the cavity size and spacing immedi- 
ately after nucleation. The observed trend in life- 
time was predicted by assuming cavity nuclei equal 
in size to the particles although this relationship 
may not be exact. Also the operation of the creep- 
controlled vacancy growth mechanism requires 
that some part of the precipitate remains in 
contact with the boundary. This could be achieved 
by the cavity growing solely to one side of the 
precipitate or for some precipitates to be free 
of cavities. 

If the precipitates are all associated with 
cavities such that they are attached to part of 
the cavity surface not containing the grain bound- 
ary then the creep-controlled vacancy mechanism 
is inoperative. In this case pore growth is likely 
to be limited by geometrical creep constraint in 



dispersion-hardened materials. An interesting 
situation can now develop in such a material con- 
taining a crack. Rapid grain-boundary diffusion 
tends to decrease the normal stress acting across 
boundaries containing pores titus increasing the 
effective crack size. The crack is expected to 
propagate rapidly down cavitated boundaries in 
a brittle fashion. The sensitivity to crack propa- 
gation may prove a useful method of  assessing 
cavity growth mechanisms which inhibit vacancy 
diffusion in precipitate-hardened materials. 

8. Conclusions 
(1 )At  intermediate stresses, cavities on grain 
boundaries acting as perfect vacancy sources and 
containing precipitates can grow by vacancy 
agglomeration. Boundary displacements resulting 
from vacancy creation can be matched with dis- 
location creep displacements in the matrix around 
the boundary precipitates. 

(2) Below a threshold stress, this model cannot 
describe boundary diffusion. If  vacancies are 
created solely at dislocations climbing in the 
boundary, precipitates will impede dislocation 
motion.  In this case boundaries will be imperfect 
sources of  vacancies. At sufficiently low stresses 
the arrival rate of  vacancies at the cavities depends 
not on the diffusion rate from the dislocations 
but on the availability of  climbing dislocations. 

(3) Dislocations moving in the matrix as a 
result of  creep intersect the grain boundary. In 
the boundary the lattice dislocation dissociates 
and climbs a distance roughly equal to the pre- 
cipitate spacing before being re-emitted to the 
matrix. This process releases vacancies on bound- 
aries under normal tension. 

(4 ) In  the creep-controlled vacancy growth 
regime, the growth rate of  cavities of  radius a, 
half-spacing c, is given by 

rr 2 i l  - 2"r/ae_ln 
f; ~ - -  c2X~ 

2 1 - 1 : a - ~ / '  

where X is the precipitate half-spacing, ~ the 
distant creep rate, 3, the surface energy and o the 
applied stress. The strain to failure is given by 

8_to 
n.'~ ~ - \ 1 - - 2 7 , a a I  X" 

The strain to failure is sensitive to the creep 
exponent, n, and the initial cavity size after 
nucleation ao. 

(5 )Four  cavity growth control mechanisms 
were discussed for a copper/silica alloy. At low 
stresses the operative mechanism for small cavities 
is creep-controlled vacancy growth. The growth 
of  larger cavities is controlled by geometrical 
creep constraint o f  neighbouring grains. 

At higher stresses growth becomes limited by 
vacancy diffusion or plastic deformation without 
vacancy fluxes. 
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